Monday, May 7, 2012

Thorium

  • Thorium is more abundant in nature than uranium. 
  • It is fertile rather than fissile, and can be used in conjunction with fissile material as nuclear fuel. 
  • Thorium fuels can breed fissile uranium-233. 
The use of thorium as a new primary energy source has been a tantalizing prospect for many years. Extracting its latent energy value in a cost-effective manner remains a challenge, and will require considerable R&D investment.

Nature and sources of thorium

Thorium is a naturally-occurring, slightly radioactive metal discovered in 1828 by the Swedish chemist Jons Jakob Berzelius, who named it after Thor, the Norse god of thunder. It is found in small amounts in most rocks and soils, where it is about three times more abundant than uranium. Soil commonly contains an average of around 6 parts per million (ppm) of thorium.
Thorium exists in nature in a single isotopic form - Th-232 - which decays very slowly (its half-life is about three times the age of the Earth). The decay chains of natural thorium and uranium give rise to minute traces of Th-228, Th-230 and Th-234, but the presence of these in mass terms is negligible.
When pure, thorium is a silvery white metal that retains its lustre for several months. However, when it is contaminated with the oxide, thorium slowly tarnishes in air, becoming grey and eventually black. Thorium oxide (ThO2), also called thoria, has one of the highest melting points of all oxides (3300°C). When heated in air, thorium metal turnings ignite and burn brilliantly with a white light. Because of these properties, thorium has found applications in light bulb elements, lantern mantles, arc-light lamps, welding electrodes and heat-resistant ceramics. Glass containing thorium oxide has a high refractive index and dispersion and is used in high quality lenses for cameras and scientific instruments.
The most common source of thorium is the rare earth phosphate mineral, monazite, which contains up to about 12% thorium phosphate, but 6-7% on average. Monazite is found in igneous and other rocks but the richest concentrations are in placer deposits, concentrated by wave and current action with other heavy minerals. World monazite resources are estimated to be about 12 million tonnes, two-thirds of which are in heavy mineral sands deposits on the south and east coasts of India. There are substantial deposits in several other countries (see Table below). Thorium recovery from monazite usually involves leaching with sodium hydroxide at 140°C followed by a complex process to precipitate pure ThO2.
Thorite (ThSiO4) is another common mineral. A large vein deposit of thorium and rare earth metals is in Idaho.
The 2007 IAEA-NEA publication Uranium 2007: Resources, Production and Demand (often referred to as the 'Red Book') gives a figure of 4.4 million tonnes of total known and estimated resources, but this excludes data from much of the world. Data for reasonably assured and inferred resources recoverable at a cost of $80/kg Th or less are given in the table below. Some of the figures are based on assumptions and surrogate data for mineral sands, not direct geological data in the same way as most mineral resources.
Estimated world thorium resources1 

(Reasonably assured and inferred resources recoverable at
up to $80/kg Th)
CountryTonnes% of total
Australia489,000 19
USA400,000 15
Turkey344,000 13
India319,000 12
Venezuela300,000 12
Brazil302,000 12
Norway132,000 5
Egypt100,000 4
Russia75,000 3
Greenland54,000 2
Canada44,000 2
South Africa18,000 1
Other countries33,000 1
World total 2,610,000   


Thorium as a nuclear fuel

Thorium (Th-232) is not itself fissile and so is not directly usable in a thermal neutron reactor – in this regard it is very similar to uranium-238. However, it is ‘fertile’ and upon absorbing a neutron will transmute to uranium-233 (U-233)a, which is an excellent fissile fuel material b. Thorium fuel concepts therefore require that Th-232 is first irradiated in a reactor to provide the necessary neutron dosing. The U-233 that is produced can either be chemically separated from the parent thorium fuel and recycled into new fuel, or the U-233 may be usable ‘in-situ’ in the same fuel form.
Thorium fuels therefore need a fissile material as a ‘driver’ so that a chain reaction (and thus supply of surplus neutrons) can be maintained. The only fissile driver options are U-233, U-235 or Pu-239 (none of which is easy to supply).

It is possible – but quite difficult – to design thorium fuels that produce more U-233 in thermal reactors than the fissile material they consume (this is referred to as having a fissile conversion ratio of more than 1.0 and is also called breeding). Thermal breeding with thorium is only really possible using U-233 as the fissile driver, and to achieve this the neutron economy in the reactor has to be very good (ie, low neutron loss through escape or parasitic absorption).  The possibility to breed fissile material in slow neutron systems is a unique feature for thorium-based fuels and is not possible with uranium fuels.

Another distinct option for using thorium is as a ‘fertile matrix’ for fuels containing plutonium (and even other transuranic elements like americium). No new plutonium is produced from the thorium component, unlike for uranium fuels, and so the level of net consumption of this metal is rather high. In fresh thorium fuel, all of the fissions (thus power and neutrons) derive from the driver component. As the fuel operates the U-233 content gradually increases and it contributes more and more to the power output of the fuel. The ultimate energy output from U-233 (and hence indirectly thorium) depends on numerous fuel design parameters, including: fuel burn-up attained, fuel arrangement, neutron energy spectrum and neutron flux (affecting the intermediate product protactinium-233, which is a neutron absorber).
An important principle in the design of thorium fuel is that of heterogeneous fuel arrangements in which a high fissile (and therefore higher power) fuel zone called the seed region is physically separated from the fertile (low or zero power) thorium part of the fuel – called the blanket. Such an arrangement is far better for supplying surplus neutrons to thorium nuclei so they can convert to fissile U-233, in fact all thermal breeding fuel designs are heterogeneous. This principle applies to all the thorium-capable reactor systems.

No comments:

Post a Comment